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A challenge in developing informative neuroimaging biomarkers for early diagnosis of Alzheimer’s disease is the need to

identify biomarkers that are evident before the onset of clinical symptoms, and which have sufficient sensitivity and specificity

on an individual patient basis. Recent literature suggests that spatial patterns of brain atrophy discriminate amongst Alzheimer’s

disease, mild cognitive impairment (MCI) and cognitively normal (CN) older adults with high accuracy on an individual basis,

thereby offering promise that subtle brain changes can be detected during prodromal Alzheimer’s disease stages. Here, we

investigate whether these spatial patterns of brain atrophy can be detected in CN and MCI individuals and whether they are

associated with cognitive decline. Images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were used to construct a

pattern classifier that recognizes spatial patterns of brain atrophy which best distinguish Alzheimer’s disease patients from CN

on an individual person basis. This classifier was subsequently applied to longitudinal magnetic resonance imaging scans of CN

and MCI participants in the Baltimore Longitudinal Study of Aging (BLSA) neuroimaging study. The degree to which Alzheimer’s

disease-like patterns were present in CN and MCI subjects was evaluated longitudinally in relation to cognitive performance.

The oldest BLSA CN individuals showed progressively increasing Alzheimer’s disease-like patterns of atrophy, and individuals

with these patterns had reduced cognitive performance. MCI was associated with steeper longitudinal increases of Alzheimer’s

disease-like patterns of atrophy, which separated them from CN (receiver operating characteristic area under the curve equal to

0.89). Our results suggest that imaging-based spatial patterns of brain atrophy of Alzheimer’s disease, evaluated with

sophisticated pattern analysis and recognition methods, may be useful in discriminating among CN individuals who are

likely to be stable versus those who will show cognitive decline. Future prospective studies will elucidate the temporal

dynamics of spatial atrophy patterns and the emergence of clinical symptoms.
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Introduction
Alzheimer’s disease poses significant medical, social and socio-

economic challenges, as it is the most common dementia, with

incidence rates doubling every 5 years after the age of 65.

Although there are currently no disease-modifying treatments,

many potential treatments are being tested, some of which may

have significant side-effects. Thus, it is critical to identify biomar-

kers that identify early stages of the disease and facilitate effective

and well-targeted treatment before significant neuronal damage.

Neuroimaging measures have been playing a central role in the

search for biomarkers of Alzheimer’s disease that can be used for

early diagnosis and monitoring of disease progression and

response to therapy. Recent studies have focused on individuals

with mild cognitive impairment (MCI), who have higher rates of

conversion to Alzheimer’s disease (as high as 15% per year) than

cognitively normal (CN) individuals (Petersen et al., 1999). Many

investigators consider MCI to be early Alzheimer’s disease, as it

has been shown that many MCI individuals have similar patterns

of atrophy and b-amyloid deposition as Alzheimer’s disease

patients (Chetelat et al., 2002; Karas et al., 2004; Klunk et al.,

2006; Ziolko et al., 2006; Rowe et al., 2007; Fan et al., 2008),

albeit some MCI individuals remain clinically stable over time and,

consistently, some also present normal structural brain profiles

(Fan et al., 2008). Given the high rates of conversion from MCI

to Alzheimer’s disease and the abundant neuropathology already

evident in MCI post-mortem (Mufson et al., 1999; Scheff et al.,

2006), greater emphasis should be placed on identifying those CN

individuals who present evolving Alzheimer’s disease-like patterns

of brain atrophy and might be relatively more likely to progress to

MCI and Alzheimer’s disease. Identification of such individuals at a

very early stage before the onset of clinical symptoms may lead to

more effective intervention of pharmacological treatments for

Alzheimer’s disease as these become available.

Several longitudinal studies of normal ageing have measured

brain changes through regions of interest (ROI) and voxel-based

analysis (Golomb et al., 1993; Convit et al., 1997; Mueller et al.,

1998; Convit et al., 2000; Resnick et al., 2001; Sullivan et al.,

2002; Resnick et al., 2003) and have increased our understand-

ing about how different brain regions change in normal ageing

populations. Although total brain or regions of interest volumes

may be reduced with ageing and Alzheimer’s disease, their inter-

individual variations and overlap across populations render them

insufficient diagnostic tools for individuals, especially at early

disease stages. The development of high-dimensional pattern

classification methods in recent years (Lao et al., 2004; Fan

et al., 2007b; Kloppel et al., 2008; Vemuri et al., 2008) offers

the potential to obtain highly sensitive and specific neuroimaging

biomarkers from individuals, rather than groups, which has great

importance for early diagnosis and for individual patient manage-

ment. These methods use sophisticated pattern analysis algorithms

that are trained to identify patterns of normal or abnormal struc-

ture and function (Davatzikos et al., 2005a), which are used for

classification at the individual level. We have shown previously

that spatial patterns of brain atrophy discriminate between CN

and Alzheimer’s disease with high accuracy [areas under the recei-

ver operating characteristic (ROC) curve: 0.965] (Fan et al., 2008).

Here, we investigate whether these spatial patterns of brain

atrophy can distinguish among CN individuals and whether

these patterns are associated with cognitive decline. The current

study is the first, to our knowledge, to utilize high-dimensional

pattern classification to evaluate the progression of abnormal pat-

terns of brain atrophy in a prospectively followed CN cohort of

older adults. We first train the classifier to recognize spatial pat-

terns of brain atrophy that distinguish Alzheimer’s disease from

CN individuals in the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) cohort. The classifier produces an algorithm for determi-

nation of a quantitative value for each individual, which we refer

to as the SPARE-AD index (Spatial Pattern of Abnormality

for Recognition of Early Alzheimer’s disease). More positive

SPARE-AD implies a more Alzheimer’s disease-like pattern of

brain atrophy, and more negative SPARE-AD implies a more

normal pattern of brain morphology. The ADNI classifier is then

applied to MRI scans of CN and MCI participants from the

Baltimore Longitudinal Study of Ageing (BLSA) to determine

the presence and longitudinal progression of these patterns via

longitudinal progression of the SPARE-AD index. Finally, the

cognitive performance of CN individuals displaying abnormal

patterns of brain atrophy is compared to CN individuals displaying

normal brain structure. Since the BLSA is a prospective study, it

provides the opportunity to detect very early stages of Alzheimer’s

disease.

Material and Methods

BLSA participants
The BLSA is a prospective longitudinal study of ageing. Its

neuroimaging component, currently in its 14th year, has followed

158 individuals (aged 55–85 years at enrolment) with annual or

semi-annual imaging and clinical evaluations. The neuroimaging

substudy of the BLSA is described in detail in (Resnick et al., 2000,

2003). Exclusionary criteria at initial evaluation were CNS disease

(epilepsy, stroke, bipolar illness, previous diagnosis of dementia),

severe cardiovascular disease (myocardial infarction, coronary artery

disease requiring angioplasty or bypass surgery), severe pulmonary

disease or metastatic cancer. The current study used longitudinal

data from 109 BLSA participants that have remained CN up to

September 2007. It also used longitudinal data from 15 individuals

that were diagnosed with MCI over the course of the BLSA neuro-

imaging study. A diagnosis of MCI was assigned by consensus con-

ference if a participant had deficits in either a single cognitive domain

(usually memory) or had more than one cognitive deficit but did not

have functional loss in activities of daily living. Participants

were evaluated at the consensus conference if their Blessed

Information Memory Concentration (Blessed et al., 1968) score was

greater than three or if their informant or subject Clinical Dementia

Rating (CDR) (Morris, 1997) score was 0.5 or above. The demo-

graphic characteristics of the BLSA participants in this study are

shown in Table 1.

The BLSA and neuroimaging studies are approved by the local insti-

tutional review boards, and all participants gave written informed

consent prior to each assessment.
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ADNI participants
The ADNI is described in www.adni-info.org. The goal of ADNI is to

recruit 800 adults, ages 55–90 years, approximately 200 CN older

individuals to be followed for 3 years, 400 people with MCI to be

followed for 3 years and 200 people with early Alzheimer’s disease to

be followed for 2 years. For up-to-date information see www.adni-

info.org. The data of all ADNI participants used in the current

study have been described previously (Fan et al., 2008). Briefly, MRI

scans from 66 CN individuals (mean age� SD 75.18� 5.39), and 56

Alzheimer’s disease patients (77.40�7.02) were analysed and used to

construct a classifier to discriminate between CN and Alzheimer’s

disease. The MMSE scores (mean� SD) of the CN and Alzheimer’s

disease groups at baseline were 29.1� 1.0, and 23.1� 1.8, respectively.

The groups were relatively well balanced in terms of sex (50%, 57%

women in CN and Alzheimer’s disease groups, respectively).

Image acquisition
We used T1-weighted MR images to measure regional patterns

of brain atrophy. The image acquisition parameters have been

described in (Resnick et al., 2001) for BLSA, and in www.adni-

info.org for ADNI. Briefly, the BLSA protocol included an axial

T1-weighted volumetric spoiled gradient recalled (SPGR) series (axial

acquisition, TR = 35 ms, TE = 5 ms, flip angle = 45�, voxel dimensions of

0.94�0.94�1.5 mm slice thickness). The ADNI protocol included a

sagittal volumetric 3D MPRAGE with 1.25�1.25 mm in-plane spatial

resolution and 1.2-mm thick sagittal slices (8� flip angle). TR and TE

values of the ADNI protocol were somewhat variable, but the target

values were TE �3.9 ms and TR �8.9 ms.

Image analysis
Images were first pre-processed according to previously validated and

published techniques (Goldszal et al., 1998). The pre-processing steps

included: (i) alignment to the AC-PC plane; (ii) removal of extra-cranial

material (skull-stripping); (iii) tissue segmentation into grey matter,

white matter and cerebrospinal fluid (CSF) (Pham and Prince, 1999);

(iv) high-dimensional image warping (Shen and Davatzikos, 2002) to a

standardized coordinate system, a brain atlas (template) that was

aligned with the Montreal Neurologic Institute coordinate space

(Kabani et al., 1998); and (v) formation of regional volumetric maps,

named RAVENS maps (Goldszal et al., 1998; Davatzikos et al., 2001;

Shen and Davatzikos, 2003), using tissue preserving image warping

(Goldszal et al., 1998). RAVENS map intensity values quantify the

regional distribution of grey matter, white matter and CSF, with one

RAVENS map for each tissue type. In particular, RAVENS values in the

template’s (stereotaxic) space are directly proportional to the volume

of the respective structures in the original brain scan. Therefore,

regional volumetric measurements and comparisons are performed

via measurements and comparisons of the respective RAVENS maps.

For example, patterns of grey matter atrophy in the temporal lobe are

quantified by patterns of RAVENS decrease in the temporal lobe in the

stereotaxic space.

The RAVENS approach has been extensively validated (Goldszal

et al., 1998; Davatzikos et al., 2001) and applied to a variety of

studies (Resnick et al., 2000, 2001, 2003, 2004; Kim et al., 2003;

Beresford et al., 2006a, b; Gur et al., 2006; Stewart et al., 2006;

Driscoll et al., 2007). It bears similarities with the ‘optimized voxel

based morphometry (VBM)’ approach (Good et al., 2002), except it

uses a highly conforming high-dimensional image warping algorithm

that captures finer structural details.

High-dimensional classification: the
SPARE-AD index as a biomarker for
Alzheimer’s disease
We applied a high-dimensional pattern classification approach, which

we have published and applied in a number of neuroimaging studies

(Lao et al., 2004; Davatzikos et al., 2005b; Fan et al., 2005, 2007a,

2008). This approach considers all brain regions jointly and identifies a

minimal set of regions whose volumes jointly maximally differentiate

between CN and Alzheimer’s disease on an individual scan basis. As

described in the Introduction section, the pattern classification method

provides a SPARE-AD index; more positive SPARE-AD implies more

Alzheimer’s disease-like brain structure, and more negative SPARE-

AD implies more normal structure. The pattern classifier determined

the spatial patterns of brain atrophy that best distinguished

Alzheimer’s disease patients from CN on an individual person basis

using the ADNI sample; as anticipated, these patterns tended to reflect

regional atrophy in the temporal lobe, posterior cingulate and other

areas known to be affected in Alzheimer’s disease (Fan et al., 2008).

We first evaluated the frequency of more Alzheimer’s disease-like

SPARE-AD values in CN individuals for different age groups, and com-

pared RAVENS maps of CN individuals in the upper quartile versus

the remaining 75% of SPARE-AD scores. To illustrate the network of

regions contributing to SPARE-AD differences between CN in the

top quartile versus lower quartiles of SPARE-AD, group comparisons

were performed via voxel-based statistical analysis software (http://

www.fil.ion.ucl.ac.uk/spm/software/spm5) of respective RAVENS

maps that were normalized by an approximation to the total intra-

cranial volume (ICV), so that spatial patterns of atrophy are examined

without the confounding effect of head size. This approximation to

ICV was obtained by summing the volumes of grey matter, white

matter, ventricular, as well as the CSF within the sulci of the cortex

that are contained within the outer brain boundary defined by the

skull stripping algorithm. The approximation to ICV, which correlates

(r = 0.93) with the more traditional approach to definition of ICV, was

employed in this analysis for consistency with the approach used in the

development of the ADNI classifier. RAVENS maps were smoothed

prior to statistical analysis using 8 mm full-width at half-maximum

smoothing kernel.

Next, we evaluated the longitudinal progression of SPARE-AD in

normals and in MCI by applying the classifier developed on the

ADNI sample to all longitudinal MRI scans of the BLSA CN and

MCI individuals, thereby allowing us to follow the evolution of the

SPARE-AD index with increasing age. Mixed-effects models were used

to estimate individual SPARE-AD rates of change, defined as annual

changes in SPARE-AD scores. Mixed models with cognitive status

Table 1 Characteristics of the BLSA participants in the
current study

Group MCI CN

No. of subjects 15 109

Sex: no. of males 10 60

Baseline age, mean (SD) 77.0 (7.2) 68.8 (7.7)

Age at last visit, mean (SD) 82.9 (7.1) 75.6 (8.1)

MMSE at first visit, mean (SD) 27.2 (2.5) 28.9 (1.3)

MMSE at last visit, mean (SD) 25.4 (3.0) 28.8 (1.2)

2028 | Brain 2009: 132; 2026–2035 C. Davatzikos et al.

http://


(MCI versus CN) as a predictor were used to test the difference in

rates for MCI versus CN.

Cognitive evaluations and associations
with SPARE-AD
To determine the relationship between SPARE-AD progression and

cognitive performance, we examined the SPARE-AD index values

and rates of change in the SPARE-AD index in relation to perfor-

mance on tests of mental status and memory. From the battery of

neuropsychological tests administered to participants in conjunction

with each imaging evaluation, we selected four measures for analysis.

The four measures used in the current analyses were the total score

from the Mini-Mental State Exam (MMSE) (Folstein et al., 1975)

to assess mental status, the immediate free recall score (sum of five

immediate recall trials) and the long-delay free recall score on the

California Verbal Learning Test (CVLT) (Delis et al., 1987) to assess

verbal learning and immediate and delayed recall, and the total

number of errors from the Benton Visual Retention Test (BVRT)

(Benton, 1974) to assess short-term visual memory. We focused on

these measures because changes in new learning and recall are among

the earliest cognitive changes detected during the prodromal phase of

Alzheimer’s disease (Grober et al., 2008). To examine relationships

between SPARE-AD and cognitive performance, CN individuals in

the highest quartile of SPARE-AD index values (most Alzheimer’s

disease-like) were compared with the remaining sample. Relationships

between SPARE-AD and the four measures of cognitive performance

were examined by t-tests for unadjusted analyses and by analysis of

covariance for analyses adjusted for age and sex.

Results

Prevalence of Alzheimer’s disease-like
SPARE-AD in CN
Table 2 summarizes the SPARE-AD index values as a function of

age decade for the CN BLSA participants, including all 818 scans

of the 109 CN. In particular, in Table 2 we have summarized the

age distribution of positive SPARE-AD scores, as well as of the

top 25% SPARE-AD scores. We report each scan individually

(numbers not in parentheses) and numbers of subjects (numbers

in parentheses) that fall in each age group. For the latter, we used

average SPARE-AD and average age. Percentages are reported

relative to the number of scans (subjects) in the respective age

range. Overall, CN below the age of 80 years had negative

SPARE-AD. However, Alzheimer’s disease-like scores were more

frequent in older individuals, even though these individuals had

normal cognition by clinical consensus criteria. Figure 1 plots the

mean SPARE-AD score of each of the 109 CN individuals against

mean age over each participant’s follow-up period. The Pearson

correlation between mean SPARE-AD score and mean age is 0.43

(P50.0001), which is highly significant. Although the quadratic

term does not reach significance, a Box–Cox transformation

(with �=�3) provides the best fit to the data (r = 0.44;

P50.001) and indicates the presence of a nonlinear association.

Spatial patterns of atrophy
In order to visually investigate the spatial pattern of regional

volumetric differences between the CN with the highest SPARE-

AD scores (the top quartile, referred to as CN_high) and the CN

with SPARE-AD scores in the lower 75% (referred to as CN_low),

we performed voxel-wise analysis of the grey matter and white

matter RAVENS maps. Figure 2 shows regions where the CN_high

Table 2 Statistics of the SPARE-AD for the total of 818 scans of all 109 CN

Age (years) 50–59 60–69 70–79 80–89 5 90 Total

Total no. of scans (subjects) 27 (3) 304 (42) 329 (44) 146 (20) 12 (0) 818 (109)

SPARE-AD` 0

No. of scans (subjects) 0 (0) 4 (1) 5 (0) 22 (3) 3 (0) 34 (4)

Percentage of scans (subjects) 0 (0) 1.32 (2.38) 1.52 (0) 15.07 (15) 25.00 (0) 4.16 (3.67)

SPARE-AD in upper quartiles

Number of scans (subjects) 0 (0) 33 (6) 79 (10) 86 (11) 6 (0) 204 (27)

Percentage of scans (subjects) 0 (0) 10.9 (14.3) 24 (22.7) 58.9 (55) 50 (NaN) 24.9 (24.8%)

Numbers outside parentheses indicate results obtained by treating each scan as an individual measurement, and numbers in parentheses indicate results obtained by

finding the average SPARE-AD and age of all scans of a given individual, and then using the average value as a single measurement of that individual. The total number
of scans per group is shown at the top row; each subject has multiple scans, one per visit. The total number of subjects per group is shown at the top row in
parentheses. Percentages were calculated relative to the total number of scans (subjects) in each age category.
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Figure 1 Mean SPARE-AD scores of each of the 109 CN

individuals plotted against mean age over their follow-up

period.
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showed less grey and white matter volumes, respectively, com-

pared to the CN_low subjects. Significant decreases in tissue

volumes in the more Alzheimer’s disease-like CN were evident

primarily in the temporal lobe. We note that the classifier used

to derive the SPARE-AD score uses regions from the temporal

lobe, the cingulate and the insula, as described in Fan (2008

#2464), because those are the regions that best discriminate

between Alzheimer’s disease and CN. Therefore, it is reasonable

that the group differences, observed herein, are primarily located

in these regions. Figure 2, therefore, should be interpreted as

a visual representation the atrophy patterns that lead to the

SPARE-AD scores described in our results.

Because regions of abnormal white matter on T1 images appear

dark and are typically segmented as grey matter, we also examined

regions of grey matter that appeared to have greater volumes in the

CN_high SPARE-AD group. The CN_high group appeared to have

more grey matter tissue around the ventricles (Fig. 3, left), especially

the posterior periventricular regions, which are white matter regions

that tend to present small vessel pathology in older individuals.

Longitudinal progression of SPARE-AD
in CN
The rates of longitudinal progression of the SPARE-AD index of

the 109 CN are shown in Fig. 4, as a function of mean age during

each person’s follow-up period. Because the number of available

follow-up scans varied considerably across individuals, mixed-

effects regression was used to estimate all rates of change and

shows significant increases in rates of SPARE-AD with age

(P50.001). For illustration, the rates are shown as a function

of age, with a Pearson correlation between rates of SPARE-AD

change and mean age of 0.45 (P5.0001), with a significant

Figure 2 The t-statistic voxel-wise maps of RAVENS grey matter (top) and white matter (bottom) comparing the 75% of CN

individuals with the lowest SPARE-AD scores (CN-like CN) minus those with the top 25% SPARE-AD (relatively more Alzheimer’s

disease-like CN). The images are in neurology convention, so left in the image is the left brain hemisphere.

Figure 3 Regions in which CN individuals with the top 25%

(highest) SPARE-AD scores had significantly higher grey matter

RAVENS maps than the bottom 75%, indicating increased

periventricular abnormal white matter tissue that appears grey

in T1-weighted images and is segmented as grey matter. The

image is in radiology convention: Top in the image is left

hemisphere.
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quadratic effect (P50.05). The increasing longitudinal rates of

SPARE-AD change with age are consistent with the nonlinearly

increasing SPARE-AD values with age shown in the cross-sectional

analysis in Fig. 1.

Longitudinal rate of change of
SPARE-AD in MCI
The rates of SPARE-AD change of the 15 participants who were

diagnosed with MCI over the course of the study are plotted in

Fig. 5 against the age of the participants. Most of these individuals

showed relatively rapid increase of the SPARE-AD index, even

though their SPARE-AD scores were largely in the negative

range (only 14 of the 97 scans had positive scores consistent

with their relatively mild stage of impairment). Mixed-effects

models were used to compare rates of change in CN versus

MCI. Rates of change were significantly greater in MCI compared

with CN (estimate = 0.15, SE = 0.017, P50.0001).

Separability of CN and MCI on an
individual subject basis, based
on rate of SPARE-AD change
For individual patient management, it is important to be able to

determine whether the individual is likely to remain stable or

convert to MCI. We constructed a ROC curve, by varying the

threshold applied to the rate of SPARE-AD change and assigning

individuals with rates of change higher than the threshold to MCI,

and vice versa for CN. Figure 6 shows the ROC curve, which

achieved an area under the curve (AUC) equal to 0.89.

Relationship between cognitive
performance and SPARE-AD in CN
Cross-sectional analyses of the four cognitive measures (CVLT

Sum of Immediate Free Recall, CVLT Delayed Free Recall and

BVRT errors) in relation to SPARE-AD were performed using

subgroups determined from the mean SPARE-AD, the SPARE-AD

at the first imaging visit and the SPARE-AD at the last imaging

visit. Cognitive performance between SPARE-AD groups was

compared by t-test for unadjusted index values, and by analysis

of covariance for SPARE-AD adjusted for age and sex. As shown

in Table 3, using mean SPARE-AD and mean cognitive perfor-

mance unadjusted for age and sex, both short and long-term

verbal memory scores were significantly lower (P50.01) in

CN_high compared with CN_low groups. Using SPARE-AD

groupings and cognitive scores from the first visit, MMSE in

addition to CVLT performance was significantly lower (P50.01)

in the CN_high compared with CN_low groups. Cognitive perfor-

mance did not differ between groups using data from the last

follow-up, and only the results for the MMSE at the first visit

remained significant after adjusting for age and sex.

We also divided individuals by the rate of SPARE-AD change,

yielding a high versus low change group. Again, CN with high

rates of SPARE-AD increase (the top 25% rate of SPARE-AD

change values) showed significantly lower CVLT learning and
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Figure 4 Rate of SPARE-AD change as a function of average

age during follow-up period, for the 109 CN individuals.
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Figure 5 SPARE-AD annual change rates plotted against age

for all MCI individuals.
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Figure 6 ROC curve of individual subject classification to CN

or MCI, based on the rate of SPARE-AD change. AUC = 0.885.
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memory performance compared with CN with low rates of

SPARE-AD change (Table 4). In addition, CN with high rates

of SPARE-AD change had poorer performance on the MMSE,

a measure of mental status, during the last visit. However, these

findings were no longer significant after adjustment for age

and sex.

Relationship between cognitive
performance and SPARE-AD in MCI
In the group of 15 participants diagnosed as MCI over the course

of the study, the individuals with positive SPARE-AD, as well as

the ones with relatively higher rates of SPARE-AD change, showed

relatively worse cognitive performance. We did not examine

quartiles, due to the small sample size. Mixed-effects regression

showed a significant association between the SPARE-AD index

and MMSE scores of individuals diagnosed with MCI

(estimate =�1.23, SE = 0.33, P50.001, Fig. 7).

Discussion
A variety of neuroimaging studies have examined brain structure,

as well as its longitudinal change, in CN samples and in MCI and

Alzheimer’s disease via group analyses. We introduced the use of

support vector machine learning approaches for classification of

CN and impaired individuals at an individual level, as opposed to

investigating group differences (Lao et al., 2004; Davatzikos et al.,

2008; Fan et al., 2007b). The potential of this approach for

individual classification and diagnosis has been confirmed recently

by others (Duchesne et al., 2008; Kloppel et al., 2008; Vemuri

et al., 2008). Our current study builds upon a computer-based

pattern classification method constructed in Fan et al. (2008) to

detect spatial patterns of brain atrophy that distinguish between

Alzheimer’s disease patients and CN on an individual basis. In this

study, we applied the classification algorithm that distinguished

between Alzheimer’s disease patients and CN subjects in the

ADNI to a different sample of CN and MCI subjects from

the BLSA. This approach generates a CN-like (negative) and

Alzheimer’s disease-like (positive) SPARE-AD index of spatial

Table 3 P-values of cross-sectional differences in cognitive performance between the CN subjects with the top 25% of
the SPARE-AD scores and the remaining 75%

Mean
scores

Mean
scores adjusted
(for sex and age)

First visit
scores

First visit
scores adjusted

Last visit
scores

Last visit
scores adjusted

CVLT List A Sum 0.0075 0.5155 0.0020 0.1797 0.3357 0.3754

CVLT Long Delay Free 0.0067 0.3150 0.0067 0.2674 0.1817 0.8458

BVRT Errors 0.0930 0.9728 0.3505 0.8944 0.5994 0.5592

MMSE 0.1719 0.9666 0.0092 0.0174 0.5203 0.8606

Column labels indicate the scores used in the analysis, e.g. ‘mean scores’ indicates the P-value is based on mean cognitive performance and mean SPARE-AD index over
time. Covariates in adjusted comparisons are baseline age and sex.

Table 4 P-values of differences in cognitive performance between the CN individuals with high rates of SPARE-AD
change and CN individuals with low rates of SPARE-AD change (remaining 75%)

Mean
cognitive score

Mean cognitive
score adjusted

First visit
cognitive score

First visit cognitive
score adjusted

Last visit
cognitive score

Last visit cognitive
score adjusted

CVLT List A Sum 0.0295 0.4784 0.0250 0.3792 0.0190 0.2780

CVLT Long Delay Free 0.0448 0.5288 0.0455 0.4476 0.0066 0.1018

BVRT Errors 0.3987 0.4906 0.6139 0.6453 0.3302 0.9097

MMSE 0.2020 0.8316 0.3475 0.8306 0.0579 0.1901

Covariates in adjusted comparisons are baseline age and sex.
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Figure 7 SPARE-AD index values (vertical axis) plotted

against MMSE scores for all MCI individuals. The linear effect

(P50.001) was determined using mixed-effects regression.
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atrophy patterns. We examined the frequency and longitudinal

progression of Alzheimer’s disease-like spatial atrophy patterns in

the BLSA cohort of CN elderly, as well as in relatively mild MCI

individuals.

Our results indicate that although the vast majority of CN have

negative SPARE-AD and remain relatively stable over time, the

proportion of individuals showing more Alzheimer’s disease-like,

even positive, SPARE-AD increases with age. Comparisons of CN

groups showing relatively higher SPARE-AD and CN individuals

with relatively lower SPARE-AD revealed differences in spatial

atrophy patterns consistent with the pattern of atrophy character-

istic of Alzheimer’s disease. A strength of this study is that we

examined SPARE-AD patterns in CN individuals who have been

followed prospectively and remained clinically normal during the

study follow-up period. Despite the lack of clinically evident

impairment, CN individuals in the upper quartile of SPARE-AD,

compared with the remaining CN individuals, had significantly

lower performance on tests of mental status and immediate and

delayed verbal memory. Declines in verbal episodic memory are

among the earliest cognitive changes preceding a diagnosis of

dementia, by as much as an average of seven years when inves-

tigated within the context of a prospective study (Grober et al.,

2008), and the most robust grey matter differences contributing to

the SPARE-AD classifier involved temporal lobe structures, which

are critical for maintenance of intact memory performance.

Moreover, individuals with steeper increases in the rate of

SPARE-AD had lower cognitive performance. The majority of asso-

ciations between cognitive performance and SPARE-AD index did

not hold after adjusting for age, indicating overlap in the factors

mediating spatial atrophy change and cognitive change. This is not

unexpected, since cognitive decline occurs in parallel with brain

tissue loss in ageing populations, and age-adjustment may remove

the relationship of interest. More sophisticated dynamic modeling

of longitudinal data and statistical approaches which avoid age-

adjustment in larger samples may be necessary to determine

whether SPARE-AD has a robust association with cognitive

performance.

Notably, cross-sectional relationships between the SPARE-AD

index and cognitive scores were evident for the mean values

and those at the first but not the last visit. The absence of

associations for the last visits when participants are older is

consistent with post-mortem findings that Alzheimer’s disease

neuropathology may show a different pattern in the oldest

participants (Giannakopoulos et al., 1995). Future longitudinal

follow-up of these individuals, half of which are also enrolled in

the BLSA autopsy study, will further elucidate the predictive value

of high SPARE-AD or high rate of SPARE-AD change for

Alzheimer’s disease neuropathology. However, our results indicate

that the SPARE-AD index might potentially be an important early

biomarker of Alzheimer’s disease progression, even before

symptoms come to clinical attention. The longitudinal stability of

the SPARE-AD index in CN with more negative scores, as indi-

cated by low rates of change, indicates that SPARE-AD might be

a relatively objective tool, which will assist in the evaluation of

structural phenotypes associated with Alzheimer’s disease and

aid in the discrimination of CN who are likely to remain stable

versus those who are at greatest risk for memory impairment.

A much larger proportion of the MCI individuals showed high

rates of SPARE-AD change, as expected. The MCI group also

showed a relatively large and uniform spread in the range of

�0.1–0.5 per year, which indicates a rather rapid progression of

Alzheimer’s disease-like brain atrophy. This agrees with the well

documented finding that MCI individuals are quite heterogeneous,

and that some will convert to Alzheimer’s disease in the following

years whereas others will remain stable for a long period. As these

MCI individuals were identified within the context of prospective

BLSA follow-ups rather than referrals to memory clinics, they are

initially studied during very early stages of impairment and have

relatively mild MCI. This is in agreement with the fact that most

MCIs had negative SPARE-AD albeit many had high rates of

change, indicating that rate of change may be a stronger predictor

of conversion to Alzheimer’s disease. Further follow up of the

entire BLSA cohort will allow us to evaluate the predictive value

of the SPARE-AD and its rate of change in MCI converters

to Alzheimer’s disease.

Our ability to distinguish between MCI and CN using a single

value, namely the rate of SPARE-AD change, is very promising. In

addition, CN individuals with high rates of SPARE-AD change

showed lower cognitive performance; thus, CN individuals that

were ‘misclassified’ as MCI based on SPARE-AD index might

actually develop MCI in the near future. However, we did not

find any particular relationship between the exact year of con-

version and the SPARE-AD. Some MCI subjects converted at

low (negative) SPARE-AD values and others at higher values

after years of SPARE-AD increase. However, what was common

in most MCI subjects was that they had high rates of SPARE-AD

change. In view of the importance of the accurate estimation of

rate of SPARE-AD change, future work in our group will empha-

size the use of robust image analysis methods for estimation of

rate of change. 4D segmentation and warping methods (Shen and

Davatzikos, 2004; Xue et al., 2006) which have recently appeared

in the literature promise to provide the foundation of future

longitudinal analyses.

In Figs 2 and 3, voxel-based comparisons of more Alzheimer’s

disease-like and CN-like CN individuals demonstrated greater

amounts of grey matter in the periventricular regions for the

more Alzheimer’s disease-like compared with the CN-like group.

While more Alzheimer’s disease-like CN showed the expected

Alzheimer’s disease-like patterns of brain atrophy, primarily in

the temporal lobe, the increase in estimated grey matter in

periventricular regions highlights regions of greater white matter

abnormalities. These findings are consistent with a role of

increased vascular pathology underlying the progression to

Alzheimer’s disease. It is important to note that the periventricular

white matter signal abnormalities were not used by the classifier in

stratifying the subjects, since the classifier constructed from the

ADNI Alzheimer’s disease and CN individuals (Fan et al., 2008)

incorporated only temporal, prefrontal and posterior parietal

cortical regions. Therefore, subjects presenting Alzheimer’s dis-

ease-like atrophy patterns, i.e. more positive SPARE-AD scores,

were identified based solely on their cortical atrophy in those

regions. The observation that CN in the upper quartile of

SPARE-AD scores also showed periventricular leukoareosis sug-

gests that subjects developing Alzheimer’s disease-like atrophy
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developed vascular pathology in parallel. These findings are con-

sistent with recent evidence that vascular pathology and

Alzheimer’s disease-type neuropathology act in an additive

manner to increase the risk for clinical dementia (Schneider

et al., 2004; Troncoso et al., 2008), perhaps by increasing the

likelihood that a person will cross the clinical threshold for

a diagnosis of dementia. However, concurrent analysis of quan-

titative measures of progression of vascular disease in combination

with measures of atrophy is necessary to better understand

whether there might be any causal relationship between these

two pathologies, or whether they simply develop in parallel.

Another contribution of the current study is that it evaluates the

stability of pattern classification methods across two different large

studies, which is important for the clinical applicability and gen-

eralization ability of these analysis tools across different clinics as

biomarkers of Alzheimer’s disease. In particular, the CN and

Alzheimer’s disease participants of the ADNI study were used to

construct a classifier that recognizes Alzheimer’s disease-like pat-

terns of brain atrophy (Fan et al., 2008), and was then applied to

the BLSA, a completely independent longitudinal study of normal

ageing. Previous reports employing similar methods have been

restricted to single studies (Davatzikos et al., 2008; Fan et al.,

2008; Vemuri et al., 2008) and therefore do not test the

generalization ability of these classifiers as biomarkers of

Alzheimer’s disease. However, recent studies testing similar

methods across sites have begun to emerge (Kloppel et al.,

2008). These studies suggest that pattern classification methods

are likely to be helpful tools in diagnosis of dementia and prog-

nosis of its progression.

One limitation in interpreting our findings is that we do not

have a gold standard for evaluation of the meaning of the positive

SPARE-AD score, although we hypothesize that increasing spatial

atrophy patterns will correspond to increasing Alzheimer’s disease

pathology. However, our results suggest that future studies should

investigate the temporal dynamics of associations between spatial

patterns of atrophy, vascular disease, and neuropathology in lead-

ing to memory impairment and dementia. Prospective imaging

studies, such as the BLSA neuroimaging study, in combination

with autopsy assessment of neuropathology will provide important

information on the temporal relationships among these cognitive

and brain changes in older adults.
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